skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weiss, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Salient aspects of the commissioning, calibration, and performance of the CMS silicon strip tracker are discussed, drawing on experience during operation with proton-proton collisions delivered by the CERN LHC. The data were obtained with a variety of luminosities. The operating temperature of the strip tracker was changed several times during this period and results are shown as a function of temperature in several cases. Details of the system performance are presented, including occupancy, signal-to-noise ratio, Lorentz angle, and single-hit spatial resolution. Saturation effects in the APV25 readout chip preamplifier observed during early Run 2 are presented, showing the effect on various observables and the subsequent remedy. Studies of radiation effects on the strip tracker are presented both for the optical readout links and the silicon sensors. The observed effects are compared to simulation, where available, and they generally agree well with expectations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract Slant absolute total electron content (TEC) is observed by the Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (FORMOSAT‐7/COSMIC‐2, F7/C2) Tri‐GNSS Radio Occultation System (TGRS) instrument. We present details of the data processing algorithms, validation, and error assessment for the F7/C2 global positioning system (GPS) absolute TEC observations. The data processing includes estimation and application of solar panel dependent pseudorange multipath maps, phase to pseudorange leveling, and estimation of separate L1C‐L2C and L1C‐L2P receiver differential code biases. We additionally perform a validation of the F7/C2 GPS absolute TEC observations through comparison with colocated, independent, TEC observations from the Swarm‐B satellite. Based on this comparison, we conclude that the accuracy of the F7/C2 GPS absolute TEC observations is less than 3.0 TEC units. Results are also presented that illustrate the suitability of the F7/C2 GPS absolute TEC observations for studying the climatology and variability of the topside ionosphere and plasmasphere (i.e., altitudes above the F7/C2 orbit of550 km). These results demonstrate that F7/C2 provides high quality GPS absolute TEC observations that can be used for ionosphere‐thermosphere data assimilation as well as scientific studies of the topside ionosphere and plasmasphere. 
    more » « less